Как представить число в двоично десятичной системе. Двоичная система счисления. Практическое обоснование использования двоично-десятичной системы счисления

Двоично-десятичная система счисления получила большое распространение в современных компьютерах ввиду легкости перевода в десятичную систему и обратно. Она используется там, где основное внимание уделяется не простоте технического построения машины, а удобству работы пользователя. В этой системе счисления все десятичные цифры отдельно кодируются четырьмя двоичными цифрами и в таком виде записываются последовательно друг за другом.

Двоично-десятичная система не экономична с точки зрения реализации технического построения машины (примерно на 20 % увеличивается потребное оборудование), но очень удобна при подготовке задач и при программировании. В двоично-десятичной системе счисления основанием системы счисления является число десять, но каждая из 10 десятичных цифр (0, 1, ..., 9) изображается при помощи двоичных цифр, то есть кодируется двоичными цифрами. Для представления одной десятичной цифры используются четыре двоичных. Здесь имеется, конечно, избыточность, поскольку четыре двоичных цифры (или двоичная тетрада) могут изобразить не 10, а 16 чисел, но это уже издержки производства в угоду удобства программирования. Существует целый ряд двоично-кодированных десятичных систем представления чисел, отличающихся тем, что определенным сочетаниям нулей и единиц внутри одной тетрады поставлены в соответствие те или иные значения десятичных цифр 1 .

В наиболее часто используемой естественной двоично-кодированной десятичной системе счисления веса двоичных разрядов внутри тетрады естественны, то есть 8, 4, 2, 1 (табл. 3.1).

Таблица 3.1. Таблица двоичных кодов десятичных и шестнадцатеричных цифр

Цифра Код Цифра Код
A
B
C
D
E
F

Например, десятичное число 9703 в двоично-десятичной системе выглядит так: 1001011100000011.

18 вопрос. ос. Логические основы работы ЭВМ. Операции алгебры логики

Алгебра логики предусматривает множество логических операций. Однако три из них заслуживают особого внимания, т.к. с их помощью можно описать все остальные, и, следовательно, использовать меньше разнообразных устройств при конструировании схем. Такими операциями являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ). Часто конъюнкцию обозначают & , дизъюнкцию - || , а отрицание - чертой над переменной, обозначающей высказывание.

При конъюнкции истина сложного выражения возникает лишь в случае истинности всех простых выражений, из которых состоит сложное. Во всех остальных случаях сложное выражение будет ложно.

При дизъюнкции истина сложного выражения наступает при истинности хотя бы одного входящего в него простого выражения или двух сразу. Бывает, что сложное выражение состоит более, чем из двух простых. В этом случае достаточно, чтобы одно простое было истинным и тогда все высказывание будет истинным.

Отрицание – это унарная операция, т.к выполняется по отношению к одному простому выражению или по отношению к результату сложного. В результате отрицания получается новое высказывание, противоположное исходному.

19 вопрос. Основные правила алгебры логики

Обычная запись этих законов в формальной логике:

20 вопрос. Таблица истинности

Таблицы истинности

Логические операции удобно описывать так называемыми таблицами истинности , в которых отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний. Простые высказывания обозначаются переменными (например, A и B).

21 Вопрос. Логические элементы. Их названия и обозначения на схема

Как же использовать полученные нами знания из области математической логики для конструирования электронных устройств? Нам известно, что О и 1 в логике не просто цифры, а обозначение состояний какого-то предмета нашего мира, условно называемых "ложь" и "истина". Таким предметом, имеющим два фиксированных состояния, может быть электрический ток. Устройства, фиксирующие два устойчивых состояния, называются бистабильными (например, выключатель, реле). Если вы помните, первые вычислительные машины были релейными. Позднее были созданы новые устройства управления электричеством - электронные схемы , состоящие из набора полупроводниковых элементов. Такие электронные схемы, которые преобразовывают сигналы только двух фиксированных напряжений электрического тока (бистабильные) , стали называть логическими элементами.

Логический элемент компьютера - это часть электронной логичеcкой схемы, которая реализует элементарную логическую функцию.

Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и другие (называемые также вентилями ), а также триггер.

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает от двух до восьми входов и один или два выхода.

Чтобы представить два логических состояния - “1” и “0” в вентилях, соответствующие им входные и выходные сигналы имеют один из двух установленных уровней напряжения. Например, +5 вольт и 0 вольт.

Высокий уровень обычно соответствует значению “истина” (“1”), а низкий - значению “ложь” (“0”).

Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем.

Работу логических элементов описывают с помощью таблиц истинности.

Таблица истинности это табличное представление логической схемы (операции), в котором перечислены все возможные сочетания значений истинности входных сигналов (операндов) вместе со значением истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

Двоично-десятичная система счисления

Двоично-десятичная система счисления получила большое распространение в современных компьютерах из-за легкости перевода в десятичную систему и обратно. Она используется там, где основное внимание уделяется не простоте технического построения машины, а удобству работы пользователя. В этой системе счисления все десятичные цифры отдельно кодируются четырьмя двоичными цифрами и в таком виде записываются последовательно друг за другом.

Двоично-десятичная система не экономична с точки зрения реализации технического построения машины (примерно на 20 % увеличивается требуемое оборудование), но очень удобна при подготовке задач и при программировании. В двоично-десятичной системе счисления основанием системы счисления является число 10, но каждая десятичная цифра (0, 1, ..., 9) изображается, то есть кодируется, двоичными цифрами. Для представления одной десятичной цифры используются четыре двоичных. Здесь, конечно, имеется избыточность, поскольку 4 двоичных цифры (или двоичная тетрада) могут изобразить не 10, а 16 чисел, но это уже издержки производства в угоду удобству программирования. Существует целый ряд двоично-кодированных десятичных систем представления чисел, отличающихся тем, что определенным сочетаниям нулей и единиц внутри одной тетрады поставлены в соответствие те или иные значения десятичных цифр.
Размещено на реф.рф
В наиболее часто используемой естественной двоично-кодированной десятичной системе счисления веса двоичных разрядов внутри тетрады естественны, то есть 8, 4, 2, 1 (табл. 6).

Таблица 6

Двоично-десятичная счисления

Например, десятичное число 5673 в двоично-десятичном представлении имеет вид 01010110011100011.

Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.

1. Для перевода двоичного числа в десятичное необходимо ᴇᴦο записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики˸

При переводе удобно пользоваться таблицей степеней двойки˸

Таблица 7.

Степени числа 2

n (степень)

Пример. Число перевести в десятичную систему счисления.

2. Для перевода восьмеричного числа в десятичное необходимо ᴇᴦο записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики˸

При переводе удобно пользоваться таблицей степеней восьмерки˸

Таблица 8.

Степени числа 8

n (степень)
8 n

Двоично-десятичная система счисления - понятие и виды. Классификация и особенности категории "Двоично-десятичная система счисления" 2015, 2017-2018.

Примером смешанной системы счисления является двоично-десятичная система . В двоично-десятичной системе счисления для изображения каждой десятичной цифры отводится 4 двоичных разряда, поскольку максимальная десятичная цифра 9 кодируется как 1001 2 . Например,

925 10 = 1001 0010 0101 2-10 .

Здесь последовательные четверки (тетрады) двоичных разрядов изображают цифры 9, 2 и 5 десятичной записи соответственно.

Хотя в двоично-десятичной записи используются только цифры 0 и 1, эта запись отличается от двоичного изображения данного числа. Например, двоичный код 1001 0010 0101 соответствует десятичному числу 2341, а не 925.

В случае если P=Q l (l – целое положительное число), запись любого числа в смешанной системе счисления тождественно совпадает с изображением этого числа в системе счисления с основанием Q. Примерами такой смешанной системы счисления являются двоично-восьмеричная и двоично-шестнадцатеричная.

Например,

A2 16 = 1010 0010 2 = 1010 0010 2-16

ПРЕДСТАВЛЕНИЕ ОТРИЦАТЕЛЬНЫХ ЧИСЕЛ В ФОРМАТЕ С ФИКСИРОВАННОЙ ЗАПЯТОЙ (ТОЧКОЙ)

В компьютерах в целях упрощения выполнения арифметических операций применяются специальные двоичные коды для представления отрицательных чисел: обратный и дополнительный. При помощи этих кодов упрощается определение знака результата операции при алгебраическом сложении. Операция вычитания (или алгебраического сложения) сводится к арифметическому сложению операндов, облегчается выработка признаков переполнения разрядной сетки. В результате упрощаются устройства компьютера, выполняющих арифметические операции.

Известно, что одним из способов выполнения операции вычитания является замена знака вычитаемого на противоположный и прибавление его к уменьшаемому:

А - В = А + (- В)

Этим операцию арифметического вычитания заменяют операцией алгебраического сложения, которую можно выполнить при помощи двоичных сумматоров.

Для машинного представления отрицательных чисел используют коды прямой, дополнительный, обратный . Упрощенное определение этих кодов может быть дано следующим образом. Если число А в обычном двоичном коде - прямом двоичном коде, изобразить как

[A] пр = 0.an an-1 an-2.....a1 a0,

тогда число -А в этом же коде представляется как

[-A]пр = 1.an an-1 an-2.....a1 a0,

а в обратном (инверсном) коде это число будет иметь вид:

[-A]об = 1.an an-1 an-2.....a1 a0,

ai = 1, если ai = 0,

ai = 0, если ai = 1,

a i - цифра i -того разряда двоичного числа. Следовательно, при переходе от прямого кода к обратному все цифры разрядов матиссы числа инвертируются.

Тогда число -A в дополнительном коде изображается в виде

[-A]доп = [-A]об + 1

Таким образом, для получения дополнительного кода отрицательных чисел нужно сначала инвертировать цифровую часть исходного числа, в результате чего получается его обратный код, а затем добавить единицу в младший разряд цифровой части числа.

Дополнительный код некоторого числа получается его заменой на новое число, дополняющее его до числа, равного весу разряда, следующего за самым старшим разрядом разрядной сетки, используемой для представления мантиссы числа в формате с фиксированной запятой. Поэтому такой код числа называется дополнительным.

Представим, что мы имеем только два разряда для представления чисел в десятичной системе счисления. Тогда максимальное число, которое можно изобразить будет 99, а вес третьего несуществующего старшего разряда будет 10 2 , т.е. 100. В таком случае для числа 20 дополнительным будет число 80, которое дополняет 20 до 100 (100 - 20 = 80). Следовательно по определению вычитание

можно заменить на сложение:

Здесь старшая единица выходит за пределы выделенной разрядной сетки, в которой остается только число 30, т.е. результат вычитания из 50 числа 20.

А теперь рассмотрим похожий пример для чисел, представленных 4-х разрядным двоичным кодом. Найдем дополнительное число для 0010 2 = 210. Надо из 0000 вычесть 0010, получим 1110, которое и является дополнительным кодом 2. Разряд, изображенный в квадратных скобках на самом деле не существует. Но так как у нас 4-х разрядная сетка, то выполнить такое вычитание в принципе невозможно, а тем более мы стараемся избавиться от вычитания. Поэтому дополнительный код числа получают способом, описанным ранее, т.е. сначала получают обратный код числа, а затем прибавляют к нему 1. Проделав все это с нашим числом (2), нетрудно убедиться, что получится аналогичный ответ.

Подчеркнем, что дополнительный и обратный коды используются только для представления отрицательных двоичных чисел в форме с фиксированной запятой . Положительные числа в этих кодах не меняют своего изображения и представляются как в прямом коде.

Таким образом, цифровые разряды отрицательного числа в прямом коде остаются неизменными, а в знаковой части записывается единица.

Рассмотрим простые примеры.

Семерка в прямом коде представляется так:

пр = 0.0001112

Число -7 в прямом коде:

[-7]пр = 1.0001112,

а в обратном коде будет иметь вид

[-7]об = 1.1110002,

т.е. единицы заменяются нулями, а нули единицами. То же число в дополнительном коде будет:

[-7]доп = 1.1110012.

Рассмотрим еще раз как процедура вычитания, при помощи представления вычитаемого в дополнительном коде, сводится к процедуре сложения. Вычтем из 10 число 7: 10 - 7 = 3. Если оба операнда представлены в прямом коде, то процедура вычитания выполняется так:

-1.000111

А если вычитаемое, т.е. -7, представить в дополнительном коде, то процедура вычитания сводится к процедуре сложения:

+ 1.111001

1 0.000011 = 310.

В настоящее время в компьютерах для представления отрицательных чисел в формате с фиксированной запятой обычно используется дополнительный код.

Формой представления чисел в цифровых автоматах называется совокупность правил, позволяющих установить взаимное соответствие между записью числа и его количественным эквивалентом.

Машинное (автоматное) изображение числа это есть представление числа в разрядной сетке цифрового автомата . Условное обозначение машинного изображения числа, например, A будем представлять как [A] .

Из-за ограниченной длины машинных слов, множество чисел, которые можно представить в машине конечное. Сравнение различных форм представления чисел в компьютерах обычно производится на основе оценки диапазона и точности представления числа .

В повседневной практике наиболее распространенной является форма представления чисел в виде последовательности цифр, разделенной запятой на целую и дробную части. Числа, представленные в такой форме, называются числами с естественной запятой или числами в естественной форме . В естественной форме число записывается в естественном натуральном виде, например 12560 - целое число, 0,003572 - правильная дробь, 4,89760 - неправильная дробь.

При представлении чисел в такой форме обязательно требуется для каждого числа указание о положении его запятой в разрядной сетке, выделенной для представления числа в машине, что требует дополнительных аппаратных затрат достаточно большого объема. Поэтому в компьютерах получили распространение две другие формы представления: с фиксированной и плавающей запятой (точкой) .

Необходимость в указании положения запятой отпадает, если место запятой в разрядной сетки машины заранее фиксировано раз и навсегда. Такая форма представления чисел называется представлением с фиксированной запятой (точкой) .

Так как числа бывают положительные и отрицательные, то формат (разрядная сетка) машинного изображения разбивается на знаковую часть и поле числа . В поле числа размещается само изображение числа, которое мы будем условно называть мантиссой числа. Для кодирования знака числа используется самый старший разряд разрядной сетки, отведенной для изображения двоичного числа, а остальные разряды отводятся под мантиссу числа. Положение запятой в разрядной сетке строго фиксируется, обычно или правее самого младшего разряда мантиссы, или левее самого старшего. В первом случае число представляется как целое, во втором - как правильная дробь . В настоящее время в подавляющем большинстве в компьютерах в формате с фиксированной точкой представляются целые числа.

В знаковую часть записывается информация о знаке числа. Принято, что знак положительного числа "+" изображается символом 0, а знак отрицательного числа "-" изображается символом 1.

Например, в двоичном коде, используя 6-разрядную сетку, число 7 в форме с фиксированной запятой можно представить в виде:

где цифра левее точки это знак числа, а пять цифр правее точки - мантисса числа в прямом коде. Здесь подразумевается, что запятая фиксирована правее младшего разряда , а точка в изображении числа в данном случае просто разделяет знаковый бит от мантиссы числа.

В дальнейшем часто будет использоваться в примерах такой вид представления числа в машинной форме. Можно использовать и другую форму представления числа в машинной форме:

где знаковый разряд выделяется квадратными скобками.

Количество разрядов в разрядной сетке, отведенное для изображения мантиссы числа, определяет диапазон и точность представления числа с фиксированной запятой. Максимальное по абсолютной величине двоичное число изображается единицами во всех разрядах, исключая знаковый, т.е. для целого числа

|A|max = (2 (n -1) - 1),

где n - полная длина разрядной сетки. В случае 16-разрядной сетки

|A| max = (2 (16-1) - 1) = 32767 10 ,

т.е. диапазон представления целых чисел в этом случае будет от +3276710 до -3276710 .

Для случая, когда запятая фиксируется правее младшего разряда мантиссы, т.е. для целых чисел, числа, у которых модуль больше, чем

(2 (n-1) - 1) и меньше единицы не представляются в форме с фиксированной запятой. Числа, по абсолютной величине меньше единицы младшего разряда разрядной сетки, называются в этом случае машинным нулем.Отрицательный ноль запрещен.

В некоторых случаях, когда можно оперировать только модулями чисел, вся разрядная сетка, включая самый старший разряд, отводится для представления числа, что позволяет расширить диапазон изображения чисел.

Иногда бывает удобно хранить числа в памяти процессора в десятичном виде (Например, для вывода на экран дисплея). Для записи таких чисел используются двоично-десятичные коды . Не нужно путать двоично-десятичный код с . Для записи одного десятичного разряда используется четыре двоичных бита. Эти четыре бита называются тетрадой. Иногда встречается название, пришедшее из англоязычной литературы: нибл. При помощи четырех бит можно закодировать шестнадцать цифр. Лишние комбинации в двоично-десятичном коде являются запрещенными. Таблица соответствия двоично-десятичного кода и десятичных цифр приведена ниже:

Двоично-десятичный код Десятичный код
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9

Остальные комбинации двоичного кода в тетраде являются запрещенными. Запишем пример двоично-десятичного кода:

1258 = 0001 0010 0101 1000

В первой тетраде записана цифра 1, во второй — 2, в третьей — 5, а в последней тетраде записана цифра 8. В данном примере для записи числа 1258 потребовалось четыре тетрады. Количество ячеек памяти микропроцессора зависит от его разрядности. При 16-разрядном процессоре все число уместится в одну ячейку памяти.

589 = 0000 0101 1000 1001

В данном примере для записи числа достаточно трех тетрад, но ячейка памяти 16-разрядная. Поэтому старшая тетрада заполняется нулями. Они не изменяют значение цифры. Если бы мы заполнили нулями младшую тетраду, то число увеличилось бы в десять раз!

При записи десятичных чисел часто требуется записывать знак числа и десятичную запятую (в англоязычных странах точку). Двоично-десятичный код часто применяется для набора телефонного номера или набора кодов телефонных служб. В этом случае кроме десятичных цифр часто применяются символы "*" или "#". Для записи этих символов в двоично-десятичном коде применяются запрещенные комбинации

Достаточно часто в памяти процессора для хранения одной десятичной цифры выделяется одна ячейка памяти (восьми, шестнадцати или тридцатидвухразрядная). Это делается для повышения скорости работы программы. Для того, чтобы отличить такой способ записи двоично-десятичного числа от стандартного, способ записи десятичного числа, как это показано в примере, называется упакованной формой двоично-десятичного числа. Запишем те же числа, что и в предыдущем примере в неупакованном двоично-десятичном коде для восьмиразрядного процессора:

1258 =00000001 00000010 00000101 00001000

В первой строке записана цифра 1, во второй - 2, в третьей - 5, а в последней строке записана цифра 8. В данном примере для записи числа 1258 потребовалось четыре строки (ячейки памяти)

589 = 00000000 00000101 00001000 00001001

Суммирование двоично-десятичных чисел.

Суммирование двоично-десяичных чисел можно производить по правилам обычной двоичной арифметики, а затем производить двоично-десятичную коррекцию . Двоично-десятичная коррекция заключается в проверке каждой тетрады на допустимые коды. Если в какой либо тетраде обнаруживается запрещенная комбинация, то это говорит о переполнении. В этом случае необходимо произвести двоично-десятичную коррекцию. Двоично-десятичная коррекция заключается в дополнительном суммировании числа шесть (число запрещенных комбинаций) с тетрадой, в которой произошло переполнение или произошёл перенос в старшую тетраду. Приведём два примера.

Сложение положительных чисел Сложение многоразрядных чисел осуществляется по правилам двоичной арифметики; особенность проявляется при сложении двух единиц. При S = Ю(10)сумма двух единиц равна двум, что эквивалентно 10(2). Таким образом, вместо одного разряда образуется два. В этом...
(Вычислительная техника)
  • Арифметические действия над числами с плавающей запятой
    Сложение чисел При сложении чисел с плавающей запятой результат определяется как сумма мантисс слагаемых с общим для слагаемых порядком. Если знаки обеих мантисс одинаковы, то они складываются в прямых кодах, если разные - в дополнительном или обратном кодах. В табл. 2.8 приведен порядок действий...
    (Вычислительная техника)
  • Числа в десятичной системе счисления
    10° - единица 109 - миллиард 1024 - септиллион 101 - десять 1012 - триллион 1027 - октиллион 102 - сто 1015 - квадриллион Ю30 - нониллион 103 - тысяча 1018 - квинтиллион 1033 - дециллион 106 - миллион 1021 - ...
    (Физика)
  • Системы счисления
    Человеку издревле приходилось считать различные предметы и записывать их количество. Для этих целей возникла унарная система записи, при которой числа обозначались соответствующим количеством черточек (или засечек). Например, число 5 представлялось как 111 |. Унарная запись очень громоздкая и...
    (Архитектура ЭВМ)
  • Экономичность системы счисления
    Число в системе счисления рек разрядами, очевидно, будет иметь наибольшее значение в том случае, если все цифры числа окажутся максимальными, т. е. равными - 1). Тогда (гр)тах =(/>-1)...(/>-!) = / -1. к цифр Количество разрядов числа при переходе от одной системы счисления...
    (Архитектура ЭВМ)
  • Корректура счисления пути по одной линии положения
    При подходе к побережью обстановка может сложиться так, что судоводитель имеет возможность получить только одну линию положения. Например, открылась вершина горы, на которую можно измерить только пеленг, или прослушиваются сигналы только одного радиомаяка. Такая же обстановка складывается и при определении...
    (Анализ и обработка навигационных измерений)