Алгоритм сортировки методом прямого включения. Сортировка методом прямого включения. Эффективность алгоритма сортировки прямым обменом

Такой метод широко используется при игре в карты. Элементы (карты) мысленно делятся на уже “готовую” последовательность A1 … An и исходную последовательность Ai … An. При каждом шаге, начиная с i=2 и увеличивая I каждый раз на единицу, из исходной последовательности извлекается i-й элемент и перекладывается в готовую последовательность, при этом он вставляется в нужное место.

Выше показан в качестве примера процесс сортировки с помощью включения восьми случайно выбранных чисел:Алгоритм этой сортировки таков:

FOR i:=2 ТО n DО

включение х на соответствующее место среди а ... a[j];

В реальном процессе поиска подходящего места удобно, чередуя сравнения и движения по последовательности, как бы просеивать Х, т. е. Х сравнивается с очередным элементом aj, а затем либо Х вставляется на свободное место, либо aj сдвигается (передается)вправо, и процесс "уходит" влево. Обратите внимание, что процесс просеивания может закончиться при выполнении одного из, двух следующих различных условий:

1. Найден элемент aj с ключом, меньшим чем ключ у Х.

2. Достигнут левый конец готовой последовательности.

Такой типичный случай повторяющегося процесса с двумя условиями окончания позволяет нам воспользоваться хорошо известным приемом барьера (sentinel). Здесь его легко применить, поставив барьер a0 со значением Х. (Заметим, что для этого необходимо расширить диапазон индекса в описании переменной а до 0 ... n.)

Анализ метода.прямого включения. Число сравнений ключей (Ci) при i-ом просеивании самое большее равно i - 1,самое меньшее – 1; если предположить, что все перестановки из п ключей равновероятны, то среднее число сравнений - i/2. Число, же пересылок (присваиваний элементов) Mi равно Ci + 2 (включая барьер). Поэтому общее число сравнений и число пересылок таковы:

Сave = (n2 + n - 2)/4,

Сmax = (n2 + n - 4)/4,

М min = З*(n - 1),

М ave = (n2 + 9n - 10)/4,

М max = (n2 + 3n - 4)/2.

Минимальные оценки встречаются в случае уже упорядоченной исходной последовательности элементов, наихудшие же оценки – когда они первоначально расположены в обратном порядке. В некотором смысле сортировка с помощью включений демонстрирует истинно естественное поведение. Ясно, что приведенный алгоритм описывает процесс устойчивой сортировки: порядок элементов с равными ключами при нем остается неизменным.

Алгоритм с прямыми включениями можно легко улучшить, если обратить внимание на то, что готовая последовательность (a1 … ai-1 , в которую надо вставить новый элемент, сама уже упорядочена. Естественно остановиться на двоичном поиске, при котором делается попытка сравнения с серединой готовой последовательности, а затем процесс деления пополам идет до тех пор, пока не будет найдена точка включения. Такой модифицированный алгоритм сортировки называется методом с двоичным включением (binary insertion).

Сортировка методом прямого включения работает со списком неупорядоченных положительных целых чисел (обычно называемых ключами), сортируя их в порядке возрастания. Это делается примерно так же, как большинство игроков упорядочивают сданные им карты, поднимая каждый раз по одной карте. Покажем работу общей процедуры на примере следующего неотсортированного списка из восьми целых чисел:

27 412 71 81 59 14 273 87.

Отсортированный список создается заново; вначале он пуст. На каждой итерации первое число неотсортированного списка удаляется из него и помещается на соответствующее ему место в отсортированном списке. Для этого отсортированный список просматривается, начиная с наименьшего числа, до тех пор, пока не находят соответствующее место для нового числа, т.е. пока все отсортированные числа с меньшими значениями не окажутся впереди него, а все числа с большими значениями --- после него. Следующая последовательность списков показывает,как это делается:

Итерация 0

Отсортированный 27

Итерация 1 Неотсортированный 412 71 81 59 14 273 87

Отсортированный 27 412

Итерация 2 Неотсортированный 71 81 59 14 273 87

Отсортированный 27 71 412

Итерация 3 Неотсортированный 81 59 14 273 87

Отсортированный 27 71 81 412

Итерация 4 Неотсортированный 59 14 273 87

Отсортированный 27 59 71 81 412

Итерация 5 Неотсортированный 14 273 87

Отсортированный 14 27 59 71 81 412

Итерация 6 Неотсортированный 273 87

Отсортированный 14 27 59 71 81 273 412

Итерация 7 Неотсортированный 87

Отсортированный 14 27 59 71 81 87 273 412

В следующем алгоритме заводится только один список, и переорганизация чисел производится в старом списке.

Algorithm SIS (Сортировка Прямым включением). Отсортировать на старом месте последовательность целых чисел I(1), I(2), . . . ,I (N) в порядке возрастания.

Шаг 1. [ Основная итерация ]

For J← 2 to Ndo through шаг 4 od ;and STOP.

Шаг 2. [ Выбор следующего целого ] Set K← I(J); and L←J−1.

Шаг 3. [ Сравнение с отсортированного целыми ] While K

AND L≥1 do set I (L+1)I(L); and L←L−1 od.

Шаг 4. [ Включение ] Set I(L+1)←K.

QUICKSORT :Алгоритм сортировки со средним временем работы О(N ln N)

Основная причина медленной работы алгоритма SIS заключается в том, что, все сравнения и обмены между ключами в последовательности а 1 , а 2 , . . . ,а N происходят для пар из соседних элементов. При таком способе требуется относительно большое

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Строк 38 08 16 06 79 76 57 24 56 02 58 48 04 70 45 47Действие

1 38 47 уменьшение j



5 04 38 обмен

6 08 38 увеличение i

10 38 79 обмен

14 02 38 обмен

15 76 38 увеличение i,>

16 38 76 обмен

17 38 56 уменьшение j

19 24 38 обмен

20 57 38 увеличение i,>

21 38 57 обмен,уменьшение

22 04 08 16 06 02 24 38 57 56 76 58 48 79 70 45 47

(1 2 3 4 5 6) 7 (8 9 10 11 12 13 14 15 16)


время, чтобы поставить ключ, находящийся не на месте, в нужную позицию в сортируемой последовательности. Естественно попытаться ускорить этот процесс, сравнивая пары элементов, находящихся далеко друг от друга в последовательности.

К.Хоор изобрел и весьма эффективно применил эту идею (алгоритм QUICKSORT), сократив среднее время работы алгоритма SIS от порядка О(N 2) до порядка О(N ln N). Поясним этот алгоритм следующим примером.

Предположим, что мы хотим отсортировать последовательность чисел из первой строки на рис. 15. Начнем с предположения, что первый ключ в этой последовательности(38) служит хорошей аппроксимацией ключа, который в конечном счете появится в середине отсортированной последовательности. Используем это значение в качестве ведущего элемента, относительно которого ключи могут меняться местами, и продолжим следующим образом. Устанавливаем два указателя I и J , из которых I начинает отсчет слева (I=1) ,а J- слева в последовательности (J=N). Сравнивая а I и а J . Если а I ≤a J , устанавливаем J←J−1 и проводим следующее сравнение. Продолжаем уменьшать J до тех пор, пока не достигнем а I >а J . Тогда поменяем местами а I ↔a J (Рис.15 , строка 5 , обмен ключей 38 и 04), устанавливаем I←I+1 и продолжаем увеличивать I до тех пор, пока не получим а I >а J . После следующего обмена (строка 10, 79↔38) снова уменьшаем J. Чередуя уменьшение J и увеличение I , продолжаем этот процесс с обоих концов последовательности к «середине» до тех пор, пока не получим I=J.



Теперь имеют место два факта. Во-первых,ключ(38),который сначала находился в первой позиции, к этому времени занимает надлежащее место в сортируемой последовательности. Во- первых,все ключи слева от этого элемента будут меньшими, а все ключи справа- большими.

Ту же процедуру можно применить к левой и правой подпоследовательностям для окончательной сортировки всей последовательности. Последняя строка (с номером 22) рис.15 показывает, что когда будет получено I=J, то I=7. После этого процедура снова применяется к подпоследовательностям (1,6) и (8,16).

Рекурсивный характер алгоритма наводит на мысль, что следует значения индексов крайних элементов большей из двух неотсортированных подпоследовательностей (8,16) поместить на стек и затем перейти к сортировке меньшей подпоследовательности (1,6).

В строке 4 на рис.15 число 04 перешло в позицию 2 и сортировке подлежат подпоследовательности (1,1) и (3,6). Так как (1,1) уже отсортирована (число 02), сортируем (3,6), что в свою очередь ведет к строке 6 , в которой подлежат сортировке (3,4) и (6,6). В строке 7 подпоследовательность (1,6) отсортирована. Теперь извлекаем (8,16) из стека и начинаем сортировку этой подпоследовательности. В строке 13 находятся подпоследовательности (8,11) и (13,16), которые надо отсортировать. Помещаем (13,16) на стек, сортируем (8,11) и т.д. В строке 20 последовательность целиком отсортирована.

Прежде чем описать алгоритм QUICKSORT формально, нужно точно показать,как он работает. Мы пользуемся стеком [ LEFT (K), RIGHT (K) ] для запоминания индексов крайних левого и правого элементов еще не не отсортированных подпоследовательностей. Так как короткие подпоследовательности быстрее сортируются при помощи обычного алгоритма, алгоритм QUICKSORT имеет входной параметр М, который определяет, насколько короткой должна бать подпоследовательность, чтобы ее сортировать обычным способом.Для этой цели пользуемся сортировкой простыми включениями (SIS).

Поиск

Теперь обратимся к исследованию некоторых основных проблем, относящихся к поиску информации на стуктурах данных. Как и в предыдущем разделе, посвященному сортировки, будем предполагать, что вся информация хранится в записях, которые можно идентифицировать значениями ключей, т.е. записи R i соответствует значение ключа,обозначаемое K i .

Предположим,что в файле расположены случайным образом N записей в виде линейного массива. Очевидным методом поиска заданной записи будет последовательный просмотр ключей. Если найден нужный ключ, поиск оканчивается успешно; в противном случае будут просмотрены все ключи, а поиск окажется безуспешным.Если все возможные порядки расположения ключей равновероятны, то такой алгоритм требует O(N) основных операций как в худшем, так и в среднем случаях. Время поиска можно заметно уменьшить, если предварительно упорядочить файл по ключам. Эта предварительная работа имеет смысл, если файл достаточно велик и к нему обращаются часто.

Предположим, что мы обратились к середине файла и обнаружили там ключ K i . Сравним К и К i . Если К=К i , то нужная запись найдена. Если К<К i ,то ключ К должен находиться в части файла, предшествующей К i (если запись с ключом К вообще существует) . Аналогично, если К i <К, то дальнейший поиск следует вести в части файла, следующей за К i . Если повторять эту процедуру проверки ключа К i из середины непросмотренной части файла, тогда каждое безуспешное сравнение К с К i будет исключать из рассмотрения приблизительно половину непросмотренной части.

Блок-схема этой процедуры, известной под названием двоичный поиск , приведена на рис.16

Algorithm BSEARCH (Binary search- двоичный поиск) поиска записи с ключом К в файле с N≥2 записями, ключи которых упорядочены по возрастанию К 1 <К 2 …<К N .

Шаг 0. [Инициализация] Set FIRST←1 ; LAST← N. (FIRST и LAST- указатели первого и последнего ключей в еще не просмотренной части файла.)

Шаг 1. [Основной цикл ] While LAST≥FIRST do through шаг 4 od.

Шаг 2. [Получение центрального ключа] Set I←|_(FIRST + LAST)/2_| .(К i - ключ, расположенный в середине или слева от середины еще не просмотренной части файла.)

Шаг 3. [Проверка на успешное завершение ] If К=К I then PRINT «Успешное окончание, ключ равен К I »;and STOP fi.

Шаг 4. [ Сравнение] If K< K I then set LAST←I-1 else set FIRST←I+1 fi.

Шаг 5. [ Безуспешный поиск] PRINT «безуспешно»; and STOP.

Алгоритм BSEARCH используется для отыскания К=42 на рис.17.

Метод двоичного поиска можно также применить для того, чтобы представить упорядоченный файл в виде двоичного дерева. Значение ключа, найденное при первом выполнении шага 2 (К(8)=53), является корнем дерева. Интервалы ключей слева (1,7) и справа (9,16) от этого значения помещаются на стек. Верхний интервал снимается со стека и с помощью шага 2 в нем отыскивается средний элемент (или элемент слева от середины). Этот ключ (К(4)=33) становится следующим после корня элементом влево, если его значение меньше значения корня, и следующим вправо в противном случае. Подынтервалы этого интервала справа и слева от вновь добавленного ключа [(1,3) , (5,7)] помещаются теперь на стек.Эта процедура повторяется до тех пор, пока стек не окажется пустым. На рис.18 показано двоичное дерево, которое было бы построено для 16 упорядоченных ключей с рис.17.

Двоичный поиск можно теперь интерпретировать как прохождение этого дерева от корня до искомой записи. Если достигнута конечная вершина, а заданный ключ не найден, искомая запись в данном файле отсутствует. Заметим, что число вершин на единственном пути от корня к заданному ключу К равно числу сравнений, выполняемых алгоритмом BSEARCH при попытке отыскания К.

Да

Цель работы Исследовать сортировку массива методом прямого включения и оценить эффективность этого алгоритма.

Общие сведения

Сортировка методом прямого включения, так же, как и сортировка методом простого выбора, обычно применяется для массивов, не содержащих повторяющихся элементов. Сортировка этим методом производится последовательно шаг за шагом. На k-м шаге считается, что часть массива, содержащая первые k-1 элемент уже упорядочена, то есть. Далее необходимо взять k-й элемент и подобрать для него место в отсортированной части массива такое, чтобы после его вставки упорядоченность не нарушилась, то есть надо найти такое что. Затем надо вставить элемент a[k] на найденное место. С каждым шагом отсортированная часть массива увеличивается. Для выполнения полной сортировки потребуется выполнить n-1 шаг. Осталось ответить на вопрос, как осуществить поиск подходящего места для элемента х. Поступим следующим образом: будем просматривать элементы, расположенные левее х (то есть те, которые уже упорядочены), двигаясь к началу массива. Нужно просматривать элементы а[j], j изменяется от k-l до 1. Такой просмотр закончится при выполнении одного из следующих условий: найден элемент а[j]Пример Коротко опишем фрагмент алгоритма сортировки с помощью прямого включения: For k:= 2 to n do begin x:= a[k]; j:= k-1; { вставить х на подходящее место в a, …, a[k] } { для этого организуем цикл, которые выполняется, пока } { j > 0 и x

Контрольное задание

Написать программу вставки последнего элемента массива после первого отрицательного элемента этого же массива.

Варианты заданий

ВНИМАНИЕ!!! Если явно не указано иное, входные данные (исходный массив) и выходные данные (отсортированный массив) формировать в виде текстового файла, содержащего целые числа! Для всех заданий предварительно написать процедуру сортировки массива методом прямого включения. 1. Дан ряд, содержащий n элементов. Отсортировать их в порядке возрастания, отбрасывая при этом все повторяющиеся элементы. 2. Определить моду данного ряда – значение, встречающееся среди его элементов чаще всего. 3. Исходный набор данных представляет собой последовательность записей, состоящих из фамилии, возраста и стажа работы. Распечатать этот список: 1) в алфавитном порядке; 2) в порядке увеличения возраста; 3) в порядке увеличения стажа работы. 4. Написать процедуру сортировки по убыванию. 5. Дан ряд целых чисел. Получить в порядке возрастания все различные числа, входящие в этот ряд. 6. Дан ряд из n различных целых чисел. Получить различные целые числа такие, что7. Даны целые Найти наибольшее значение в этой последовательности после выбрасывания из нее всех членов со значением8. Даны натуральные Числа – это измеренные в сотых долях секунды результаты n спортсменов в беге на 100 м. Составить команду из четырех лучших бегунов для участия в эстафете 4х100, т. е. указать одну из четверок натуральных чисел i, j, k, l такую, что сумма имеет наименьшее значение. 9. Дано n независимых случайных точек, с координатами (xi; yi), равномерно распределенных в круге радиуса 1 с центром в начале координат. Напишите программу, располагающую точки в порядке возрастания расстояния от центра. 10. Даны n целых положительных двузначных чисел. Трактуя каждое число как пару цифр из интервала 0–9, отсортировать их (цифры) по возрастанию. 11. Дано n точек на плоскости. Указать (n-1)-звенную несамопересекающуюся замкнутую ломаную, проходящую через все эти точки. (Соседним отрезкам ломаной разрешается лежать на одной прямой.) Подсказка. Возьмем самую левую точку (т.е. точку с наименьшей x-координатой) и проведем из нее лучи во все остальные точки. Теперь упорядочим эти лучи снизу вверх, а точки на одном луче упорядочим по расстоянию от начала луча (это делается для всех лучей, кроме нижнего и верхнего). Ломаная выходит из выбранной (самой левой) точки по нижнему лучу, затем по всем остальным лучам (в описанном порядке) и возвращается по верхнему лучу. 12. Дано n точек на плоскости. Построить их выпуклую оболочку - минимальную выпуклую фигуру, их содержащую. (Резиновое колечко, натянутое на вбитые в доску гвозди - их выпуклая оболочка.) Указание. Упорядочим точки. Затем, рассматривая точки по очереди, будем строить выпуклую оболочку уже рассмотренных точек.

Метод: Метод косвенного измерения влажности веществ, основанный на зависимости диэлектрической проницаемости этих веществ от их влажности. Источник: РМГ 75 2004: Государственная система обеспечения еди …

КРОВЬ - КРОВЬ, жидкость, заполняющая артерии, вены и капиляры организма и состоящая из прозрачной бледножелтоват. цвета плаз мы и взвешенных в ней форменных элементов: красных кровяных телец, или эритроцитов, белых, или лейкоцитов, и кровяных бляшек, или … Большая медицинская энциклопедия

Недвижимость - (Real estate) Определение недвижимости, виды недвижимости, аренда и продажа недвижимости Информация о понятии недвижимость, виды недвижимости, аренда и продажа недвижимости, налогообложение и страхование Содержание - это вид имущества,… … Энциклопедия инвестора

У этого термина существуют и другие значения, см. C. См. также: Си (язык программирования) C++ Семантика: мультипарадигмальный: объектно ориентированное, обобщённое, процедурное, метапрограммирование Тип исполнения: компилируемый Появился в … Википедия

ОЦЕНКА СТОИМОСТИ НЕМАТЕРИАЛЬНЫХ АКТИВОВ - (англ. intangible assets appraisal) – определение стоимости объема прав предприятия на определенную группу объектов, не имеющих материально вещественного содержания и приносящих предприятию доход в течение периода, оговоренного национальным… … Финансово-кредитный энциклопедический словарь

ШКОЛА общеобразовательная - уч. воспитат. учреждение, базовый элемент образоват. системы. В этом качестве Ш. предмет исследования разл. дисциплин: пед., ист., демографич., социология, и др. Только в педагогике проблематика Ш. занимает вполне самостоят. место. Изученность… … Российская педагогическая энциклопедия

время - 3.3.4 время tE (time tE): время нагрева начальным пусковым переменным током IА обмотки ротора или статора от температуры, достигаемой в номинальном режиме работы, до допустимой температуры при максимальной температуре окружающей среды. Источник … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р МЭК 60204-1-2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования - Терминология ГОСТ Р МЭК 60204 1 2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования оригинал документа: TN систем питания Испытания по методу 1 в соответствии с 18.2.2 могут быть проведены для каждой цепи… … Словарь-справочник терминов нормативно-технической документации

автоматический - 3.3.1 автоматический пробоотборник (automatic sampler): Устройство, используемое для извлечения представительной пробы жидкости, протекающей по трубопроводу. Примечание Автоматический пробоотборник обычно состоит из зонда (щупа), экстрактора… … Словарь-справочник терминов нормативно-технической документации

напряжение - 3.10 напряжение: Отношение растягивающего усилия к площади поперечного сечения звена при его номинальных размерах.

Сортировка методом прямого включения, так же, как и сортировка методом простого выбора, обычно применяется для массивов, не содержащих повторяющихся элементов.

Сортировка этим методом производится последовательно шаг за шагом. На k –м шаге считается, что часть массива, содержащая первые k– 1 элемент, уже упорядочена, то есть .

Далее необходимо взять k –й элемент и подобрать для него место в отсортированной части массива такое, чтобы после его вставки упорядоченность не нарушилась, то есть надо найти такое что . Затем надо вставить элемент a(k) на найденное место.

С каждым шагом отсортированная часть массива увеличивается. Для выполнения полной сортировки потребуется выполнить n– 1 шаг.

Осталось ответить на вопрос, как осуществить поиск подходящего места для элемента х . Поступим следующим образом: будем просматривать элементы, расположенные левее х (то есть те, которые уже упорядочены), двигаясь к началу массива. Нужно просматривать элементы а(j) , j изменяется от k– l до 1. Такой просмотр закончится при выполнении одного из следующих условий:

Найден элемент , что говорит о необходимости вставки х между и а(j) .

Достигнут левый конец упорядоченной части массива, следовательно, нужно вставить х на первое место.

До тех пор, пока одно из этих условий не выполнится, будем смещать просматриваемые элементы на 1 позицию вправо, в результате чего в отсортированной части будет освобождено место под х .

Методику сортировки иллюстрирует таблица 2:

Таблица 2 – Пример сортировки с помощью прямого включения

Первоначально упорядоченная последовательность состоит из 1–го элемента 9. Элемент а(2) =5 – первый из неупорядоченной последовательности и 5 < 9, поэтому ставится на его место, а 9 сдвигается вправо. Теперь упорядоченная последовательность состоит из двух элементов 5, 9. Элемент а(3) =15 неупорядоченной последовательности больше всех элементов упорядоченной последовательности, поэтому остаётся на своём месте и на следующем шаге упорядоченная последовательность состоит из 5, 9, 15, а рассматриваемый элемент 6. Процесс происходит до тех пор, пока последовательность не станет упорядоченной.

Шейкерная сортировка

Метод пузырька допускает три простых усовершенствования. Во–первых, если на некотором шаге не было произведено ни одного обмена, то выполнение алгоритма можно прекращать. Во–вторых, можно запоминать наименьшее значение индекса массива, для которого на текущем шаге выполнялись перестановки. Очевидно, что верхняя часть массива до элемента с этим индексом уже отсортирована, и на следующем шаге можно прекращать сравнения значений соседних элементов при достижении такого значения индекса. В–третьих, метод пузырька работает неравноправно для "легких" и "тяжелых" значений. Легкое значение попадает на нужное место за один шаг, а тяжелое на каждом шаге опускается по направлению к нужному месту на одну позицию.

На этих наблюдениях основан метод шейкерной сортировки (ShakerSort). При его применении на каждом следующем шаге меняется направление последовательного просмотра. В результате на одном шаге "всплывает" очередной наиболее легкий элемент, а на другом "тонет" очередной самый тяжелый. Пример шейкерной сортировки приведен в таблице 3.

Таблица 3 – Пример шейкерной сортировки

Сортировка массива с помощью включений с уменьшающимися расстояниями (метод Шелла)

Д. Шеллом было предложено усовершенствование сортировки с помощью прямого включения.

Идея метода: все элементы массива разбиваются на группы таким образом, что в каждую группу входят элементы, отстоящие друг от друга на некоторое число позиций L . Элементы каждой группы сортируются. После этого все элементы вновь объединяются и сортируются в группах, при этом расстояние между элементами уменьшается. Процесс заканчивается после того, как будет проведено упорядочивание элементов с расстоянием между ними, равным 1.

Пример сортировки методом Шелла приведен в таблице 4.

Таблица 4 – Пример сортировки методом Шелла

Сначала рассмотрим вариант, когда первоначальное значение L равно половине числа элементов в массиве, а каждое последующее значение вдвое меньше предыдущего. Заметим, что обмениваются элементы, которые отстоят на величину шага. Если при сравнении 2–х элементов обмена не произошло, то места сравниваемых элементов сдвигаются вправо на одну позицию. Если обмен произошёл, то происходит сдвиг соответствующих сравниваемых элементов на L .

Сортировка разделением (быстрая сортировка)

Метод сортировки разделением был предложен Чарльзом Хоаром. Этот метод является развитием метода простого обмена и настолько эффективен, что его стали называть методом быстрой сортировки – «Quicksort».

Основная идея алгоритма состоит в том, что случайным образом выбирается некоторый элемент массива x , после чего массив просматривается слева, пока не встретится элемент a(i) такой, что a(i) > x , а затем массив просматривается справа, пока не встретится элемент a(i) такой, что a(i) < x . Эти два элемента меняются местами, и процесс просмотра, сравнения и обмена продолжается, пока мы не дойдем до элемента x . В результате массив окажется разбитым на две части – левую, в которой значения ключей будут меньше x , и правую со значениями ключей, большими x . Далее процесс рекурсивно продолжается для левой и правой частей массива до тех пор, пока каждая часть не будет содержать в точности один элемент. Рекурсию можно заменить итерациями, если запоминать соответствующие индексы массива.

Процесс сортировки массива быстрым методом представлен в таблице 5.

Таблица 5 – Пример быстрой сортировки